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Development of a general synthetic method for the construc­
tion of seven-membered carbocycles or the annulation of a 
seven-membered ring onto an existing carbocycle has been an 
active area of research, in part due to a wide occurrence of 
hydroazulenic sesquiterpenes and related bicyclic natural prod­
ucts.1 Among many elegant synthetic methods that have 
emerged, the Cope rearrangement of cw-divinylcyclopropanes 
proved to be of considerable synthetic utility.2-5 Herein we 
report a diastereoselective synthesis of cw-l,2-dialkenylcyclo-
propanols (2: R = H and ferf-butyldimethylsilyl) and subse­
quent oxy-Cope rearrangement (2 —* 3) under relatively mild 
conditions.6 
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Scheme 1 

We envisioned that a convenient assembly of CM-1,2-
dialkenylcyclopropanols could be developed by the Kulinkovich 
hydroxycyclopropanation, which involves treatment of a car-
boxylic ester with an excess (3 equiv) of Grignard reagent at 
-78 to 0 0C in the presence OfTi(O-Z-Pr)4 (1 equiv), affording 
1-alkylcyclopropan-l-ols in good yields!7 In the case of 
2-phenethylmagnesium bromide, Kulinkovich and co-workers 
documented the formation of the corresponding cw-l,2-disub-
stituted cyclopropanols.7b They also developed a catalytic 
process [2 equiv of Grignard reagent, 5-10 mol % Ti(O-I-Pr)4, 
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ether, 20 0C] and put forth an attractive reaction mechanism 
which involves the formal "double alkylation" of titanacyclo-
propane intermediate 5 (Scheme l).7cd8_1° More recently, Corey 
reported an improved procedure for this hydroxycyclopropa­
nation, along with the unequivocal determination of exception­
ally high diastereoselectivity for cw-l,2-disubstituted cyclopro-
panols and an enantioselective version mediated by a chiral Ci-
symmetric diol ligand.11 

Our initial efforts were directed at the application of the 
Kulinkovich cyclopropanation to commercially available methyl 
1-cyclohexene-l-carboxylate (9) (Scheme T). Addition of 
EtMgBr or n-BuMgCl to 9 in the presence of Ti(0-i'-Pr)4 under 
catalytic conditions gave the expected cyclopropanols 10a and 
10b, respectively (46—54%; unoptimized yield). However, none 
of the desired product was isolated from the use of CH2=CHCH2-
CHaMgBr under identical reaction conditions; a complex 
mixture of the unidentified products was found. No cyclopro­
panols were obtained from (2-(3'-furanyl)ethyl)magnesium 
bromide12 or 2-phenethylmagnesium bromide.'3 If the reactions 
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with these substrates had been successful, this procedure would 
have provided a one-step synthesis of the requisite substrates 
for the subsequent oxy-Cope rearrangement. 

These disappointing results prompted us to employ a 4-alkox-
ybutyl Grignard reagent. Indeed, both reagents l la ,b gave the 
desired cyclopropanols 12a,b in 77% and 46% yield (under 
stoichiometric conditions), respectively (Scheme 3). Removal 
of the protecting group provided alcohol 13 as a single isomer. 
Unfortunately, several attempts to convert 13 into olefin 14 were 
unsuccessful. This unexpected difficulty was circumvented by 
the formation of the silyl enol ether: Swern oxidation (1.5 equiv 
of oxalyl chloride and 2.5 equiv of DMSO in CH2CI2, followed 
by 5.0 equiv of Et3N) of alcohol 13, followed by treatment with 
TBSOTf and triethylamine,14 resulted in the exclusive formation 
of the (Z)-SiIyI enol ether 15a ( / = 5.9 Hz), along with a small 
amount of 15b. When heated at reflux in benzene, the enol 
ethers underwent the oxy-Cope rearrangement to provide 
bicyclic cycloheptadiene 16a in 72% overall yield from 13, 
along with 4% of 16b.15 The stereochemical assignment of 16a 
was initially made by consideration of the transition state for 
the Cope rearrangement of divinylcyclopropanes and was 
unequivocally confirmed by difference NOE spectroscopy of 
cyclopropane 20, which was readily prepared from cyclopro-
panation of 16a (vide infra).16 

Oxidation of alcohol 13 could also be accomplished by the 
Saigo-Mukaiyama protocol17 or TPAP.18 As outlined above, 
the resulting aldehyde was then directly converted into cyclo­
heptadiene 16a in 69% and 57% overall yield (from 13), 
respectively. 

The identical synthetic sequence on methyl 1-cyclopentene-
1-carboxylate (17)19 afforded hydroazulene 19 in 53% overall 
yield by means of cyclopropanol 18 (Scheme 4).20 

(13) Most of the Grignard reagents in these unsuccessful reactions 
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108, 3745. 
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Bull. Chem. Soc. Jpn. 1981, 54, 3229. (c) Mander, L. N.; Sethi, S. P. 
Tetrahedron Lett. 1984, 25, 5953. 
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L.; Roland, D. M.; Henning, R.; Shimizu, K. J. Am. Chem. Soc. 1979,101, 
7104. 
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Soc, Chem. Commun. 1987, 1625. 
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Having developed a convenient synthetic method for fused 
bicyclic systems 16a and 19, we briefly examined subsequent 
elaborations of the cycloheptadiene functionality. For example, 
Simmons-Smith cyclopropanation (CH2I2, Et2Zn)21 of 16a gave 
cyclopropane 20 as a single diastereomer (75%) (Scheme 5). 
The stereochemical assignment was firmly established on the 
basis of the NOE difference experiment.16 Hydrogenation (H2, 
Pd/C) of the remaining double bond, followed by treatment with 
HF in aqueous acetonitrile, produced ketone 21 in 69% overall 
yield. Treatment of 16a with dichlorocarbene22 gave dichlo-
rocyclopropane 22 in nearly quantitative yield. Hydrogenation 
(H2, Pd/C), followed by treatment with silver nitrate in aqueous 
acetone, resulted in one-carbon ring expansion to afford ketal 
23, a bicyclo[6.4.0]dodecanone derivative, in 70% overall 
yield.23 Also, hydrogenation (H2, Pd/C) of 16a took place 
readily to give the fully reduced product 24. 

In summary, tandem application on 1-cycloalkene-l-carboxy-
late of the Kulinkovich hydroxycyclopropanation and the oxy-
Cope rearrangement provides a stereoselective synthesis of fused 
bicyclic compounds (such as bicyclo[5.4.0]undecanes or bicyclo-
[6.4.0]dodecanes) bearing several sites for further structural 
elaboration. Further mechanistic and synthetic studies, as well 
as the development of enantioselective hydroxycyclopropana­
tion,20 will be reported in due course. 
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